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LETTER TO THE EDITOR 

Monte Carlo study of the three-state square Potts 
antiferromagnet 

Jiii Kolafa 
Department of Mathematical Physics, Charles University, V HoleSovifkLch 2, 180 00 Praha 
8, Czechoslovakia 

Received 4 June 1984 

Abstract. The role of a new type of vortices introduced in the three-state square Potts 
antiferromagnet for decay of correlations is considered. Fluctuations of the vortex charge 
in a region are measured using the Monte Carlo method. Data suggest an exponential 
decay of correlations. At zero temperature, an equivalent surface model is considered. A 
Monte Carlo experiment indicates roughening, thus suggesting an algebraical decay of the 
zero temperature Potts antiferromagnet. 

The three-state Potts antiferromagnet on a square lattice is defined by the Hamiltonian 

where the sum is over nearest neighbours on a lattice A, ai = 1,2,3 for i E A and S is 
the Kronecker delta. 

Grest and Banavar (1981) in their Monte Carlo (MC) study a detected rapid change 
of a global ordering parameter-'sublattice magnetisation'-near T = 0.4 which could 
suggest long-range order below this temperature. However, it was not clear whether 
this phenomenon is an effect of finite lattice size. 

Fucito (1983) studied the influence of boundary conditions on the inside magnetisa- 
tion. Though the same ordering occurs, the behaviour of the susceptibility (fluctuation 
of magnetisation) indicates that this is due to an excess of correlation length over 
lattice volume. 

The MC renormalisation group analysis (Jayaprakash and Tobochnik 1982) leads 
to a conclusion that there is no critical point at T >  0. 

Recent theoretical considerations (Nijs et al, 1982, Nightingale and Schick 1982) 
also imply that the model exhibits phase transition only at T = 0. 

The model at zero temperature possesses non-vanishing residual entropy which 
may be rigorously calculated (Lieb 1967a, b). The entropy per lattice site turns to equal 
5 In $. Moreover, the fact that zero temperature is a critical point of the model may be 
shown by considering it as a special case of a three-colour model (Baxter 1970) or an 
extension to continuous q (Baxter 1982) within their respective critical regions. The 
existence of unique phase at zero temperature is also indicated using a correspondence 
that allows us to interpret entropical restrictions on configurations in terms of ener- 
getical excitations of a corresponding ferromagnetic model at a non-zero temperature 
(Kotecki 1984). 
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The model at non-zero temperature may be studied in analogy with the square X Y  
model (plane rotator). Namely, a certain type of topological excitations-vortices- 
play an important role in the behaviour of this model. They were introduced by Nijs 
er a1 (1982) using the equivalent 27-vertex model. Their description in terms of Potts 
model configurations amounts to the assignment of topological charge to each excitation 
(a pair of nearest neighbours occupied by the same spin value). An isolated excitation 
may have positive, negative or vanishing charge (figure l(a)-(c)) .  There are also 
configurations of a spin wave type (figure l ( d ) ) .  

To clarify the nature of vortices and spin waves let us define three types of contours, 
as shown in figure 1. They may intersect only in vortex type excitation; plus and minus 
vortices are distinguished by the order of contours around them. The chargeless 
excitation only disconnects a contour. 

1 1  
((11 lbl ( c l  Id) 

Figure 1. ( a )  +vortex, ( b )  - vortex, ( c )  chargeless excitation, ( d )  spin wave. Full, broken 
and wavy lines denote (1/2),  (2/3) and (3/1) borders. 

To be more precise we define the charge enclosed in an anticlockwise oriented 
loop y c A not intersecting any excited bond by 

where Im(k)l= 1 and m ( k )  = k (mod 3). It can be easily shown that this charge is an 
integer. 

In the MC experiment we first studied the interaction of vortices with spin waves 
imposed on the lattice by appropriate boundary conditions in the limit of zero tem- 
perature. During the MC procedure vortices move in the direction perpendicular to 
the spin wave, i.e. in the direction of the ‘contour flux’. Vortices of opposite charges 
move in opposite directions. Since any vortex is a source of flux, a pair of vortices 
will interact and it turned out that opposite charges attract each other. Recalling the 
contour description we can see that opposite vortices are connected by contours making 
rigid the non-zero entropy vacuum between vortices. The attraction can be explained 
as a tendency to shorten these contours. 

Then a striking similarity with the X Y  model or Coulomb gas appears. These two 
models are proved to exhibit the Kosterlitz-Thouless transition at a finite non-zero 
temperature T, (Frohlich and Spencer 1981): below T, vortices or particles condense 
to dipoles (or multipoles) and power decay of correlations takes place, while above 
T, the Debye screening of charge density leads to an exponential decay. While in the 
rotator or Coulomb gas the probability of long dipole configuration decreases rapidly 
at low temperatures, in the Potts model the interaction is not expected to depend 
strongly on temperature; only bare activity of vortices will decrease like exp( - p ) .  
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An experiment which distinguishes whether vortices condense to dipoles or not, 
may be the following one, inspired by the ideas of the renormalisation group Consider 
some finite region A included in an infinite lattice. Denote by SQ(A) = (Q(A)’)’/* the 
fluctuation of charge enclosed in A. In the dipole phase only dipoles intersecting 
boundary dA contribute to SQ(A) and thus SQ(A) - laA1”’ for A + 00. In the exponen- 
tial decay phase vortices are separated and an additional term of order >ldAl’/’ will 
contribute to SQ(A). 

In our experiment a lattice A = L x L with the periodic boundary condition has 
been divided into square blocks a x a, for several a, and the fluctuation has been 
measured over all blocks during the MC procedure. (Actually the lattice has been 
divided into blocks in two ways differing by an a/2-shift in both directions.) The 
charge of the cluster of excitations has been measured using (1) along the smallest 
loop surrounding the cluster and a barycentre has been considered to be the charge 
source. The charge in a block was simply the sum of these point-like charges. 

Results (figure 2) show that vortices do not condense to short dipoles at any 
temperature. A probable explanation of the data is that vortices do not condense at 
all and charges screen. Then the contour flux connecting the vortices penetrates thickly 
all the volume disconnecting chargeless regions and causes exponential decay of 
spin-spin correlations. 

We should note that if we renormalise at any temperature the a-axis by a factor 2 
and the GQ(a2)-axis by an appropriate factor depending on the vortex activity, we 
obtain a picture similar to the original one at a higher temperature. It is in agreement 
with the conclusions of Jayaprakash and Tobochnik (1982). 

a L 

Figure 2. Charge fluctuation 8Q(a2) in square blocks 
a x a on a lattice 72 x72 (0, T=0 .6 ;  0, T=0.5; 0, 
T = 0.4) and on a lattice 144 x 144 (A,  T = 0.3 hot 
start; V ,  T = 0.3 cold start). The a axis has a square 
root scale. 

Figure 3. Height fluctuation ti:,, in the Potts-surface 
model for block size a and lattice size L. For the 
definition of see (3) and (4). 
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Turning to the zero temperature, an absence of excitations implies that all the sums 
( 1 )  are zero, hence (modulo an additive constant) integers si exist so that si = ui (mod 3) 
and Isi - si( = 1 for I i - jl = 1. Viewing the variables si as the height of a surface above 
zero level, we can see the similarity to the solid-on-solid model or the discrete Gaussian 
model in two dimensions at a fixed temperature. Both models are known to exhibit 
a roughening transition at a finite non-zero temperature T, (Frohlich and Spencer 198 1, 
Frohlich er al 1982), which means that the expectation 

((si - si)’) - log I i - jl 

((Si - s j ) 2 )  - 1 

(2) 

for T >  T, and 

for T < T, if 1 i - j l  + CO. The surface is plane below T, and logarithmically rough above 
T,. It also has been suggested (Frohlich and Spencer 1981, Gawedzki and Kupiainen 
1982) that the surface in rough region in the continuous limit is described by zero 
mass Gaussian measure. 

To decide which behaviour takes place at our Potts-surface model we measured 
fluctuation of surface height above mean level on a lattice A = L x L with periodic 
boundary conditions, i.e. values 

where 

1 
s = -  1 s i  

I O A  

and, similarly to non-zero temperature simulation, fluctuations of levels averaged in 
blocks a x a  into which the whole lattice has been divided: 

(4) 
MC 

where 

and shifted blocks have been included. 
Data (figure 3) clearly follow (2) and we may conclude that roughening occurs in 

this Potts-surface model. In addition, if distribution of si - s, for Ii -jl +CO is discrete 
Gaussian, the expectation (6(a i ,  aj)) - $  of the original Potts model has power law of 
Ii-jl. 

For the MC simulation we used the method of the heat bath. In one MC step the 
four spins in a square 2 X 2 were changed simultaneously with probability proportional 
to the Boltzmann factor (Creutz et al 1979, Obdriglek 1981). Then in one MC cycle 
each site on a lattice is visited four times. We performed from 212 (T=0.3, L = 144 
each start) to 2500 ( T = 0, L = 48) cycles for each temperature and each different lattice. 

I wish to thank R Koteck9 for advice and practical help. 
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